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Almraet~The simplified model of stratified two-phase pipe flow proposed by Taitel & Dukler lint. Y. 
Mult~phase Flow 2, 591-595 (1976)] has previously been reported to predict non-uuique values of liquid 
holdup in some upward inclined pipes. This paper shows that the multivaluedness is not an artifact of 
the approximations made in the model, asit  is also predicted by the exactly solvable case of laminar flow 
in an inclined square duct. A physical explanation for multiple liquid holdups is given, and their oecurrence 
is ~ in terms of simple flow variables. The stability of therthr{~ p~ib[e equilibria is ~ .  
A separated flow model predicts that, in general, the flow with the lowest holdup is the most rutble, the 
highest equilibrium is unstable and the intermediate equilibrium can be stable or unstable, potentially 
leading to hysteresis phenomenon in slightly inclined flows. 

Key Words: two-phase inclined pipe flow, stratified flow, liquid holdup prediction, pressure drop 
prediction 

1. I N T R O D U C T I O N  

Taitel & Dulder (1976a, b) proposed a simplified model for the prediction of liquid holdup 
in two-phase pipe flow. The flow is assumed to be one-dimensional and stratified along the 
length of the pipe, which can be slightly inclined from the horizontal. They published curves 
for the relationship between the height of the liquid layer (related to the holdup) and the 
Lockhart-Martinelli parameter X (related to the ratio of liquid to gas superficial pressure drops). 
Not only is the holdup predicted from this relation of intrinsic interest, but it may also be used 
to calculate the pressure drop and, furthermore, criteria for flow pattern transitions away from the 
stratified flow. The main attractions of the Taitel-Dulder (TD) model as a predictive tool is that 
it is simple to implement, and the only use made of empirical correlations is for the friction factors 
of each phase. 

The curves presented by Taitel & Dukler (1976b) were qualitatively incorrect for upward 
inclined pipes, however. Corrected plots of the TD holdup relation have been given by Taitel 
& Dukler (1986), Barnea (1987), Bake&'  Gr~vmto~ (!987) and Baker et al. (1988). Baker et al. 
point out that the TD model can predict non,unique valu~'bf the holdup for given phase fluxes, 
although it appears that this issue has been left unresolved and an ad hoc choice of the holdup 
is made if this situation occurs in practice (e.g. in inclined gas/condensate pipelines, which often 
operate in the stratified flow regime, and where the gas flow rate is much greater than the liquid 
flow rate). 

The purpose of this paper is to resolve whether the existence of multiple holdup values is a 
physically relevant phenomenon. Several aspects of this problem are discussed as follows. 

In the next section, the TD holdup relation is reviewed for stratified one-dimensional two-phase 
flow in both circular pipes and rectangular ducts, with particular emphasis on the multivalued 
regime for upward inclinations. In section 3 the equivalent curves for theliquid holdup are derived 
from the two-dimensional fluid equations for an inclined rectangular duct. Although laminar duct 
flow is of limited relevance to most applications in fluid transport, this case is exactly solvable 
and provides a prototype for two-phase pipe flows. Direct comparison with the TD curves for 
one-dimensional laminar duct flows shows good qualitative agreement; in particular the non- 
uniqueness problem persists in the exact case. Section 4 gives a physical explanation for the multiple 
flow configurations, by observing detailed velocity profiles in laminar duct flow, in conjunction with 
momentum balance considerations. 
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Section 5 quantifies the criteria when multiple holdups occur, both by parameter fitting and 
asymptotic analysis. The findings are applied to specific pipelines, illustrating in superficial velocity 
coordinates the flow regime where non-uniqueness is predicted. 

The stability of stratified flow in the multivalued regime is discussed in section 6, based on a 
dynamic one-dimensional separated flow model. Although the detailed analysis of the equations 
will be published elsewhere (Landman 1991), the results are summarized and corroborate the 
findings of Baker & Gravestock (1987) based on field-test data. A short conclusion follows in 
section 7. 

2. MULTIVALUEDNESS IN THE TD HOLDUP RELATION 

The TD equation for the prediction of the liquid level in a pipe is derived by performing a 
momentum balance on each of the liquid and gas phases in equilibrium, so that 

VP + FL = 0, VP + F o  = 0. [1] 

The pressure gradient VP is balanced by the forces due to shear and interfacial stresses, and the 
gravity force for an inclined flow, i.e. 

1 
FL = 7 (rwe SL -- z~S~ + pLALg sin 0) [2a] 

AL 

and 

1 
Fo = ~--~G (Zwo So + ziSi + PoA~g sin 0). [2b] 

See figure 1 for the definition of the geometric parameters, for both a circular pipe and rectangular 
duct. Aj and Sj are the cross-sectional area and wall perimeter of each of the gas and liquid phases, 
respectively (j  = G, L). Si is the interfacial perimeter. 0 is the angle of inclination of the pipe 
from the horizontal, which is taken as positive for small upward inclinations (the opposite sign 
convention was taken in the TD analysis). The wall shear stresses are written in the form 

l 2 ] 2 
~WL = ~fLPL UL, ~wa = ~fGPouo, [3] 

with friction factors 

fL = CL Re{", fG = CG Re~,m. [4] 

I. 

u L 

(a) 

SG 

L S t  . 
a 

{b) (e) 

Figure I. Geometry o f  stratif ied f low: (a) side view; (b) cross-section o f  a circular pipc; (c) cross-section 
o f  a rectangular duct. 
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u~ and u L are the velocities of  the phases, averaged across Ao and AL. The actual Reynolds numbers 
Rej ffi Djuj/vj (j = G, L) are based on the hydraulic diameters 

4A L 4A o 
DL ----- "-~-L ' Do ffi So +-----~ ' [5] 

as introduced by Agrawal et al. (1973). In this way the situation is as if the liquid phase is in an 
open channel, and the gas phase is flowing in a closed duct. Furthermore, one of the assumptions 
made in the TD analysis that reduces the formulae to a very simple form is that the interfacial stress 
is the same as that for the gas phase at the wall, namely zi = ~wo, which as above is based on the 
assumption that UL ~ UG. On non-dimensionalizing the length scales in the equations with respect 
to the diameter of the pipe, D (or the height b for the rectangular case), and the liquid and gas 
velocities with respect to each of their superficial values u[ and u'o, respectively, the TD holdup 
relation arises from [2a] and [2b]: 

where 

aX 2 - fl - 4 Y = O, [6] 

(dP]' 
X 2_Ldz,]L__ D L vL/# .L,"L, 

(dP'~' 2Co~fuoD'~ ,, ,.,,2 
Ld.A --~-\-;~-~).o,-o, 

is the Lockhart-Martinelli parameter and , 

y =_ (pL -- po)g sin O = --(pL -- po)g  sin O 

d:)o o ', v~: 

[7] 

[8] 

X2 = ~L U~ ( P L  - -  PO)g s in  0 Y -- [9] 
/~ u-o' 2Cr , 

~-~/~uo 

and 

a and p are purely geometrical parameters which are explicit functions of the liquid height, which 
in turn is a single-valued function of the holdup, i.e. 

& 

#=(~oDo)-~o[TO+~ T o )  [10] 

where the tilde denotes the non-dimensional form of a geometrical parameter. For a circular pipe 
these functions are given by 

Jo=¼[cos - I (~ 'L- -  1)--(2~'L 1K/1 - - ( ~ L - -  1)q, 

4' 

go ffi COS-'(~L -- 1), gL = ~ -- gO, ~ = ~/1 -- (2£L -- 1) 2, 
g 

parameters simplify to 
is the TD inclination parameter. In the case of  laminar flow ,with the friction coe t~en t  Cf, these 
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Figure 2. Liquid holdup vs non-dimensional liquid level for a circular pipe. The dashed line shows the 
linear relationship in a rectangular duct. 

For a rectangular duct the TD relation still holds, but with the simpler geometrical factors: 

~ 'O=O ' -k -Z( l - - /~L) ,  SL=O'q--Z~'L,  Si---tr ,  

1 1 
fig = (1----S~L), ffL = ( ,  [12] 

where tr = a/b is the aspect ratio of the duct. 
Note that t7 L is the reciprocal of the liquid holdup H L in either geometry, which is really only 

a consequence of mass conservation. For the rectangular duct, the trivial relationship of HE =/TL 
holds, but for a circular pipe the holdup as a function of height is 

1 
HL = 1 -- -- [COS-'(Z/~L -- 1) -- (2/~L -- 1)X/1 -- (2/7L -- 1)2], [13] 

rC 

which is shown in figure 2. The two quantites are numerically quite close, although the asymptotic 
behaviour of the curve for the circular pipe is non-linear in the limits HL--*0 or 1 (e.g. HL ~ C/~3L/2 
as kTL+0). The asymptotic limits of the holdup relation are discussed further in section 5. 

The pressure drop predicted by the TD model is found from [1] and [2b] for the momentum 
balance of the gas phase, and can be written in non-dimensional form as (Taitel & Dukler 1976a) 

~ - Q(/~L) Pc y, [14] 

/ - -  / 

\ dz/G 

where 

Q (fiL) = (aoB~)-"c'~ B 6 ~. [15] 

The function Q is a monotonically increasing function of liquid level, with a minimum QO) -- 1, 
The predictions of the TD holdup relation [6] for a circular pipe are now discussed. The friction 

factors required for its evaluation are taken as CL = Cc = 16, n = m = 1 for laminar flow, and 
CL = Cc = 0.046, n = m = 0.2 for turbulent flow. In practice the regimes for each phase would be 
determined from the actual Reynolds numbers ReL and ReG based on actual velocity and hydraulic 
diameter, with turbulent flow assumed for Re > 2000. 

Figure 3 is a graph of the liquid level ~'L VS log X at various pipe inclinations in the turbulent 
gas/turbulent liquid regime. The graph differs from that in the original paper of Taitel & Dukler 
(1976b), where nrL was incorrectly shown as being a single-valued function of log X at all 
inclinations. The relationship has since been shown correctly by Taitel & Dukler 0986), Barnea 
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Figure 3. The TD relation showing liquid level vs the Lockhart-Martinelli flux parameter (circular pipe, 
turbulent/turbulent flow regime). The pipe is inclined upwards for negative values of the parame~r Y. 

(1987), Baker & Gravestock (1987) and Baker et aL (1988); in particular, the last two papers refer 
to the fact that the fiquid level is triple-valued in an upwardly inclined pipe for a low ratio of liquid 
to gas flow (low ,I"). This leads to a dilemma in determining which value of the holdup to choose 
for a class of inclined stratified flows for which the gas and liquid fluxes are specified. Baker et ai. 
(1988) found that the holdup predicted by their existing codes based on the TD relation was 
sometimes far larger than observed in four of the five pipelines they studied. This anomaly could 
be explained by their algorithm producing an incorrect larger value for the holdup when the flow 
was in the multivalued regime. Their solution to this problem was to set the value of  the parameter 
Y t o a  minimum value of - 3.8 whenever its value was lower than this bound (this is approximately 
the limiting case for single-valuedness). This arbitrary procedure was chosen in the absence of  their 
finding any physical significance in multivalued holdup curves. 

The characteristics o f  the multivalued regime are shown in more detail in figure 4, for Y = - 5. 
AH flow regime combinations are shown, and verify the claim by Taitel & DUUer (1976a, b) 
that laminar and turbulent flows have similar holdup relations. The biggest deviations occur 
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Figure 4. The TD relation for the four possible flow regimes, Y = -5. 
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Figure 5. Comparison between laminar/ laminar flow in a circular pipe and a square duct, for the TD model 
at  Y = 0 and - 5. Both the liquid level and holdup of  the pipe flow are shown (these quantifies are identical 

for the duct). 

at low liquid flow rates: for low liquid holdup (low/~L) the gas regime does not affect the curves, 
and at higher holdup it is the gas flow regime that becomes more important, which is as might 
be expected. 

In order to further verify the TD relation, the curves were calculated for a square duct (aspect 
ratio cr = 1), assuming laminar flow (friction coefficient CL = CG = 14.22 in [4], with n = m = 1). 
Figure 5 shows three curves for two values of the slope parameter (Y = 0 and - 5); the first is 
for the square duct, for which the holdup and the liquid level are the same; the other two curves 
are for laminar flow in a circular pipe, plotting log X vs the liquid level gL and the holdup HL (using 
[13] for the relationship between the latter two quantities, drawn in figure 2). There is good 
qualitative agreement of the square and circular geometries. Also, in general there is better 
quantitative agreement when the geometries are compared on the basis of holdup--this is desirable 
as the holdup is a more general measure of flow pattern than the liquid level. 

An explanation of the numerical method used to produce the above graphs of /7  L vs X 2 is 
appropriate at this point. The TD relation [6] gives X2(Y,/TL) explicitly. Plotting X 2 over the range 
of/TL for a fixed Y is the easiest method for getting the form of the holdup curves. An arc-length 
continuation method was used to solve [6], however, which is implicit (using Newton's method) 
but allows the accurate determination of any of the parameters as a function of the others along 
a solution branch. This is particularly useful in order to accurately locate the folds (turning points) 
in the holdup curves. The software package AUTO was used to carry out this procedure, as 
described by Doedel (1984). 

Lastly, the non-dimensional pressure drop [14] can be calculated as a function of the phase 
fluxes, combining [6] and [15]. Figure 6 displays Q vs log X for slope Y = - 5  and a turbulent 
gas/liquid regime. Figure 6 demonstrates that when the liquid flux is varied with the pipe diameter, 
inclination and gas flux fixed (giving Y = - 5), the pressure drop can be triple-valued. This follows 
from the fact that Q is a single-valued function of the liquid level, which is simultaneously 
triple-valued. 

Furthermore, for pipeline design purposes, if the pipe inclination and the fluxes of the two phases 
are specified, then an interesting relationship can arise between the actual pressure drop, liquid level 
and pipe diameter. In figure 7 these quantities are plotted for volumetric flow rates of gas/oil 
at 68 atm and 38°C of qG = 13.4 m 3 s -~ and qL = 0.03 m 3 s- ' ,  at an inclination of 1 °. For a fixed 
diameter, the holdup (liquid level) and pressure drop can be triple-valued, as was found above. 
Note, however, that if the pressure drop is specified, then the sizing of the pipe can also be 
non-unique (yielding two suitable values for the diameter). This added complication is because both 
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Figure 6. Non-dimensional pressure gradient vs the Lockhard-Martinelli flux parameter, when Y = - 5, 
for the TD model in the turbulent/turbulent regime. 

(dP/dz)& and Y are functions of the diameter D in [14], and also because keeping the volumetric 
flow rates constant implies that D2uj = const for each phase. 

Up to this stage in the analysis, it is possible that the multivaluedness is an artifact of the 
simplifying assumptions on which the TD equation is based, and not the true underlying physics. 
In the next section, however, the existence of a multivalued holdup regime in an inclined pipe is 
confirmed by considering the full fluid equations for a duct, as distinct from the one-dimensional 
approximation made by Taitel & Dukler (1976a, b). 

3. LAMINAR STRATIFIED DUCT FLOW 

The equations describing stratified laminar two-phase flow in an inclined rectangular closed duct 
are considered. Similar equations were solved for a horizontal duct by Tang & Himmelblau (1963) 
and Charles & Lilleleht (l%S), whose interest was pressure drop reduction in oil transport. 

Taking a cartesian coordinate system parallel with the duct, inclined at an angle 0(0 > 0 for 
upward inclinations), the momentum equation for each phase is (j = L or G) 

-VP 
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Figure 7. Actual pressure gradient (kg m-* s-3 vs pipe diameter (m) for turbulent/turbulent’ flow for 
gas/oil at 68 atm and 38°C (-). The liquid level is shown by the dashed curve. The pipe is inclined 1” 

and the volumetric flow rates are fixed at q. = 13.4 m3 s-’ and qL = 0.03 m3 s-l. 
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where 

fJ = ~ -~z + oig sin 0 . [17] 

The boundary conditions are that the velocity vanishes at the walls x = (0, a) and y = (0, b), and 
that the fluid velocity, pressure and the tangential stress are continuous across the plane interface 
located at y = hL [see figure lc]. 

When the pipe has a circular cross-section, numerical means must, in general, be used to solve 
for the velocity field. In the rectangular geometry, however, a Fourier series solution can be 
generated, leading to a solution of the form [following Tang & Himmelblau (1963)]: 

uc = ~ [A. sinh(b. - y.)  + B. cosh(y. - h.) + E.] sin x.,  0 ~< y ~< h L , 
n = l  

[18] 

wtiere y. = nny/a, x. = nrrx/a, b. = nrtb /a and h. = mrhL/a; and similarly for the liquid phase, 

UL = ~ [C. s inhy.  + D. cosh(y. - h.) + G.] sin x. ,  h L ~< y ~< b. [19] 
n = l  

The coefficients are found as functions offcL =f~/fL, liquid level/TL = hL/b and the viscosity ratio 
care that the terms in the resulting infinite series are /~GL = /~//~L" It is found that (taking 

numerically well-posed) 

and 

where 

U G ~ - -  

-4a2f~ ~ sin x . {  
7t 3 ~ 1-t 

n = l  
n odd  

?. exp[ -  (y. - h.)] - exp[ -  (2b. - y. - h.)] 

1 + exp[-2(b.  - h.)] 

exp[- (b .  - y . ) ]  + e x p [ - ( y .  + b. - 
+ e x ~ - - ~ .  - h - ~  2 h . ) ]  

) 
[20a] 

U L ~ - -  
- 4a~fL3 ~ sin x" ~ 1 3  -- #GL 7. exp[--(h"--Y")l--expt-(y"+h")] 

rr . = 1 n [ 1 + exp(-- 2h.) 
n o d d  

exp[-(2h.  - y . ) ]  + e x p ( - y . ) ~  
 x-pT--sh-5 )' [20b] 

[1 - sech h.] - f c r [ 1  - sech(b. - h,,)] [21] 
7. = #eL tanh h. + tanh(b. - hn) 

The fluxes (superficial velocities) are then found by integrating the velocity field across the duct, 
so that 

-8a3fG ~ ~3 b. - h. - tanh(b. - h.) + [1 - sech(b. - h.)] [22a1 
u~ = brt-------g--. =, 

n odd  

and 

-8a3fr ~ -~3 [h. - tanh h . -  (1 - sech h.)Y.#OL]. [22b] 
u[ = bn - ' --- '3-  . -  t 

n o d d  

For single-phase rectangular duct flow, the friction coefficient Cf can be calculated from 

de) [23] 
C f = -  ~ z  2/~u s' 
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Figure 8. Holdup prediction in laminar square duct flow. The solid ~lrv© is the ©xa~solution; the dashed 
curve is the TD model. 

where Dxf2ab/(a + b) is the hydraulic diameter; and the superficial velocity, u' c anbe  calcu- 
lated from the liquid or gas phase above, in the limits h--,0 or h ~ 1, respectively. This gives the 
expression 

24 192e tanh b. - 
C r = ~  I -  n-- r-.=zT~t n-- 3 ] , [241 

n odd 

where ¢r = a/b is the a s I ~ t  ratio and bn = nn/tr, which was derived by Cornish (1928). 
The Loekhart-Martir~lli and slope parameters can now be evaluated exactly for a given flow, 

using definitions [9]. A comparison with the results of the exact analysis with the TD approximation 
for laminar two-phase flow in a rectangular duct can therefore be made. Figure 8 plots the holdup 
(or equivalently the liquid level) vs log X when the slope parameter Y = 0 and - 5 ,  using these two 
distinct methods of calculation. Good qualitative agreement is shown, in that multivaluedness 
is demonstrated for the upward sloping duct. The quantitative difference appears due to the 
approximate stresses used in the TD analysis, despite no approximations being made to the laminar 
friction factors. This difference suggests that improvement o f  the stresses used in the TD model 
could be made, which is an aspect of this study which the author hopes to pursue in the future. 
In particular, as shown in the next section, the liquid wall stress is of the wrong sign on the two 
upper branches of the holdup curve in the one-dimensional model. 

It is important to note that the natural parameters X and Y that appear in the TD analysis 
allow the evaluation of the relationship HL(.I, Y) to be carried out without explicit d¢l~ndence 
on the physical properties of the fluids. In the exact analysis, however, the parameter dependence 
of the holdup is HL(X, Y, PG/PL,/ZO//~L), and as a result the curves in figure 8 were calculated 
for a specific pair of fluids (methane/oil at standard conditions), where PG = 0.72 kg m -a,/~o = 
1.0 x 10-5 kgm -! s -~, pL = 900kgm -3 and/~L = 1.0 X 10-3kgm -! s -1. In addition to this pair of 
fluids, the holdup relation for gas/oil at 68 atm and for fluids of the same viscosity and different 
densities has been calculated, and the results appear to be quite insensitive to the viscosity and 
density ratios. This confirms that the quantities X and Y are the "correct" variables characterizing 
the flow. Once again the package AUTO was used to follow the solution branches in the above 
computations. The summations were carried out to at least 50 terms, with a convergence criterion 
of 6-figure accuracy. 

4. P H Y S I C A L  I N T E R P R E T A T I O N  O F  T H E  M U L T I V A L U E D  R E G I M E  

It is now instructive to examine upwardly inclined laminar flows in more detail, in order to 
provide a physical interpretation for the occurrence of the multivalued phenomena. 
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Figure 9. Holdup vs the Lockhart-MartineUi flux parameter, exact calculation, 

First, in figure 9, the liquid holdup is plotted vs X 2 for exact square duct flow when Y = - 5  
(i.e. the Lockhart-Martinelli  parameter is plotted directly, without taking a logarithm). The data 
in this form allows the description o f  net backflow when X 2 < 0 (note that negative values are 
allowed due to definition [9]). The fluids are taken as oil and natural gas at 68 atm and 38°C. 
(PG = 50 kg m -3, #G = 1.5 x 10 -5 kg m - t  s -  l, PL = 650 kg m -3, #L = 5.0 X 10 -4 kg m - i  s- i) .  

The centreline flow profiles are plotted in figure 10 at the three equilibria indicated on the holdup 
curve in figure 9 at which X 2 = 5.0 × 10 -3 and Y = - 5  (i.e. in each case the externally imposed 
flow conditions are the same). Taking a duct o f  width 10 cm inclined upwards at 10 °, the resulting 
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Figure 10. (a) Centreline velocity profiles for duct flow at the three points shown in figure 9: - -  
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(negative) pressure gradients are (i) 591, (ii) 358 and (iii) 310kgm -2 s -2 at the solutions with 
holdup (i) 0.342, (ii) 0.133 and (iii) 0.0488. 

In discussing the form of the holdup curve, notice that for small HL, X 2 increases from zero, 
which is reflected in the velocity profile (i), which is positive everywhere. The increase in flow rate 
with holdup is a property independent of the slope Y. This can be shown by determining the 
dominant balance in the one-dimensional force balance equations [1] and [2] for a small liquid level 
(]~L = HL), where the dominant terms for the liquid phase are the interfacial and wall stresses, and 
not the gravitational terms (this is discussed in more detail in section 5). Similarly, for large HL 
and large X 2 the relationship becomes independent of Y. 

For intermediate values of HL, however, the relationship is no longer monotonic once the pipe 
is upward sloping, due to the competition between the acceleration due to gravity and the axial 
pressure gradient. Taking - Y  sufficiently large and keeping the superficial gas velocity fixed, 
consider controlling the liquid level in the duct by varying the superficial liquid velocity (and thus 
the parameter X2). As the liquid holdup is increased from zero, the large liquid wall and inteffacial 
stresses will decrease and therefore the deceleration due to gravity will become more important, 
until it retards the liquid flux sufficiently that X 2 begins to decrease. This accounts for the lower 
fold in the holdup curves computed, and must always occur for X2> 0. 

As the holdup is increased further, the gas wall stress and inteffacial stress will increase due 
to the increasing velocity in the gas layer (recall the gas superficial velocity is considered fixed). 
This in turn accelerates the liquid phase, causing the liquid velocity to increase. At the point 
where this factor begins to dominate the deceleration due to gravity and liquid wall stress, the 
second fold in the holdup relation occurs, when the superficial liquid velocity begins to increase 
again, This point may occur when the superficial liquid velocity is of either sign, though for - Y 
sufficiently greater than critical it occurs when X 2 < 0 (liquid flux negative), as is the case shown 
in figure 9. 

Notice that along the middle branch of the holdup curve, the laminar flow profiles start to exhibit 
liquid back-flow, even though the liquid flux may be of either sign. The point at which back-flow 
begins (i.e. when the liquid wall stress changes sign) does not coincide with the lower fold in figure 
9, although in the example shown it occurs soon after that point [i.e. between the lower fold and 
the point (ii) shown]. Persen (1987)also considered typical liquid velocity profiles in the uphill flow 
of liquid and gas, but failed to illustrate the case where there is no back-flow, which appears to 
be the most stable flow configuration (see section 6). 

It is interesting that even though the liquid wall stress may become negative while the liquid flux 
remains positive, the TD one-dimensional model essentially remains valid. This is because the liquid 
wall stress no longer plays a significant role in the momentum balance. The incorrect sign of the 
TD wall stress was previously thought to invalidate one-dimensional inclined flow models (Shoham 
& Taitel 1984). 

5. PARAMETERIZATION OF THE MULTIVALUED REGIME 

A better understanding of the holdup curves can be achieved in terms of some simple concepts 
from bifurcation theory (Iooss & Joseph 1981). Each multivalued holdup curve has a pair of folds 
with coordinates (H~, X~) and (1-12, X~), which depend on the given value of Y (as in figure 9). 
If Y is now varied, these folds can be followed computationally (this is easily implemented with 
the software AUTO)~ Figure 11 shows the result of such a fold continuation for the exactly solvable 
case of a square duct transporting methane/oil. On the curve of X 2 vs Y (solid line), a cusp is 
observed, which is the generic behaviour which occurs when two folds coalesce, according to 
bifurcation theory. The cusp occurs at the minimum value of - Y for which the holdup relation 
is multivalued (Y = - 4.34, X 2 = 1.83 x 10 -2, HL = 0.172, for laminar square duct flow). The values 
of (HL, Y) at the folds is also plotted (dashed line) in figure 11. 

Fold continuation has also been performed for the TD equations for a circular pipe, and the 
results are plotted for the turbulent/turbulent regime in figure 12. The generic behaviour is again 
revealed, with critical values at the cusp (Y = -3.74, X 2 = 2.19 x 10 -3, ~'L = 0.174). These plots 
are useful as they predict when multivaluedness of the liquid level and holdup will occur for all 
values of the physical parameters, given an assumption of the nature of the flow (i.e. laminar 
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or turbulent, although the curves are fairly insensitive to these factors). Thus, the area bounded 
by the solid curve describes the region in X and Y coordinates for which multivalued holdup will 
occur. Bounds on the liquid level equilibria are also provided by the dashed curve in figure 12. 
Note that in the computations using the TD equation [6], not only is X 2 positive, which is the 
region of  most practical interest, but X 2 has been allowed to become negative. This indicates a 
reversal in the liquid flux, requiring that the definition of the Lockhart-Martinelli parameter [7] 
be altered with the inclusion of appropriate absolute values (arising from the true stresses having 
the form ~ = ½fpu [u I). 

The region of multiple holdup predicted from the TD holdup relation when X2> 0 can 
be quantified by parameterizing the boundary of non-uniqueness in the X2-Y plane (see 
figure 12): 

and 

(i) Right-hand boundary (coordinates of top fold): 

Y = k o + k i X  2+k2X% O < X  2~<X~; [25a] 

(ii) Left-hand boundary (coordinates of bottom fold), intermediate values: 

X ~ = X 2 + b0 tanh b, ( Yc - Y) + b2 ( Yc - Y) exp[ -  b3 ( Yc - Y)], 

I Y~I<IYI~<IY~I; [25b] 

(iii) Left-hand boundary (coordinates of bottom fold), small X: 

l o g l Y [ = a o + a t l o g X ,  I Y~I <IYI .  [25c1 

Xc and Yc are the critical values at the cusp. 
Table 1 displays the values of the constants fitted to these parameterizations, for both 

turbulent/turbulent flow (figure 12) and also turbulent gas/laminar liquid flow, when the results 
are qualitatively the same. 

In addition to [25a-c], the asymptotic regime of [6], for small values of the holdup and X, can 
be analysed for a circular pipe (the asymptotic expressions are simpler in a rectangular duct). 
For fixed Y, the dominant terms in the TD equation [6] give 

X2 c~ ~0~'o ./2) as /~L~O, [26] /~ /%,,c 

where from the definitions [10] and the geometrical relations [11] 

O~ ~ ~ 0  ~(L n/2 - 4 )  fl  ,~, fl0 ]~L 1 [27]  
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with 

2 7 n  2 : 7 [ ~  - n  3 [28]  

These expressions give the asymptotic form of the TD curves at small holdup, using the relation 
for holdup in terms of the liquid level 

16 
HL ~ ~ ~3/2. [29] 

Note that as described earlier, the dominant terms in [27] can be traced to the wall and interfacial 
stresses of the liquid phase. 

Now the differentiation of the TD equation [6] with respect to the liquid level for fixed Y 
gives 

dcx 2 d X 2  d]~ 
d---~L X + d--~L a - -  d--~L = 0. [30] 

A t  a f o l d ,  t h e  s e c o n d  t e r m  v a n i s h e s ,  a n d  t h u s  

X "2 = ~ ,,. X o ~  -=/2) as ~L'-'-+O, [311 
d~ 

Table 1. Constants  parameterizing the region of multiple holdup 

Constant  Turb, gas/Turb, liquid Turb. gas/Lain, liquid 

Arc 0.04678 0.08376 
Yc -3 .737  -3 .697  
YI - 17.80 - 2 0 . 0 0  
k 0 - 3.896 - 3.896 
k I 48.98 20.28 
k2 10550 1092 
b0 - 0.002184 - 0.006989 
bl 1.908 1.800 
b2 0.001264 0.004293 
b3 1.147 0.9744 
a0 -0.5851 -0 .5259  
a, - 0.6895 - 0.8000 
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with 

Xo ~ _ ~o 

It is now possible to calculate the position of  the lower fold as/~L~0. From the full TD equation 

3 [ (  8~n) l  211~ l Y ~ ~ ( ~ X 2 - ~ ) ~ - ~  h f  = Yo/~f l, [33] 

so that eliminating ffL from [31] and [33] gives 

_ y ~ i YoX,~/(6 n) IX 4/(6-.) [34] 

This accounts for the asymptotic form given in [25c], with the logarithm of the above constant of  
proportionality identified with a0 and al = - 4 / ( 6  - n). For a turbulent flow with n = 0.2, and for 
the laminar flow with n = 1, agreement with the above correlations is extremely good, providing 
a validation of  the computational method. 

The region where holdup non-uniqueness can occur can now be identified in terms of superficial 
velocity coordinates. The results are obtained from software that has been written that performs 
the following. 

For a given diameter and pipeline inclination, at each point of an array in the UsG--U~. plane: 

(a) The flow regime (laminar/turbulent for each phase) is guessed at. 
(b) X 2 and Y are calculated. 
(c) Test for /~L multivaluedness; if single-valued, /~L is calculated from the TD 

relation. 
(d) The local Reynolds numbers are calculated; if these lie in a different flow regime 

than (a), start again but in the new flow regime. 
(e) Flow pattern transition criteria (e.g. Taitel & Dukler 1976b) can be tested once 

steps (a)-(d) are consistent. 

The method usually converges with respect to the flow regime. It is important to note that 
although step (c) is relatively insensitive to the choice of laminar or turbulent phases, step (b) can 
be quite sensitive to this choice, by virtue of [7] and [8] defining X and Y. This therefore can 
lead to occasional convergence problems at regime boundaries. Step (c) is carried out by 
two methods; the first by searching for multiple roots by evaluating /~L over 25 subintervals of  
(0, 1), which is satisfactory if X 2 is not too small; the second method tests to see if the (X 2, Y) pair 
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Figure 13. Flow map in superficial velocity coordinates, illustrating the region where multivalued holdup 
occurs. The inset graph shows the holdup as a function of  u~ for fixed u[ across the region. The flow 

is of  gas/oil at 68 atm, in a 25 cm pipeline inclined upward at 2 °. 
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Figure 15. Flow map in superficial velocity coordinates, for 
air/water at 1 atm in a 5.1 crn pipe inclined at 1 °. The region 
of stratified flow is predicted by the TD criteria to be wavy 
(C), in accordance with the experimental results (Barnea 
1987). See the legend to figure 14 for a key to the other 

r e g i m e s .  

lie in the multivalued region which was parameterized above. The choice of  laminar or turbulent 
flow for the liquid phase only varies the multiple holdup boundaries slightly in the log-log 
coordinates; in the method used the regime is taken to be that of the neighbouring single-valued 
region. 

As an example, figure 13 is plotted for stratified flow in a 25 cm pipe inclined upwards at 
2 °, for a high-pressure gas/oil flow. The region in which non-uniqueness is predicted is shaded. 
On the left of this region the holdup lies on the "upper branch" of the holdup curves (i.e. typically 
values ~>0.5), and to the right of the multivalued region the holdup lies on the "lower branch" 
(liquid holdup ~<0.1). 

In general, given liquid and gas flow rates, the flow pattern is not known a priori ,  and pattern 
transition m u s t  be accounted for. The code described can test the Taitel & Dukler (1976b) 
mechanistic criteria for transition from stratified flow, which are designated: (A) smooth 
stratified--intermittent/dispersal annular flow; and (C) smooth stratified--.stratified wavy flow. 
The transition lines are very sensitive to pipe inclination, and the TD criteria exclude smooth 
stratified flow for the flow regime of figure 13. Figure 14 is drawn, however, for a 10cm pipe 
inclined upwards at 0.1 °, for a high-pressure gas/oil flow, when a smooth stratified region (S) is 
predicted to exist. The figure also shows where the TD criteria A and C have been satisfied. 
Furthermore, note that the non-uniqueness of the holdup is still predicted, and adjoins the smooth 
stratified region. 

Finally, figure 15 shows the flow map predicted by the TD criteria for the case performed 
experimentally in air/water at 1 arm in a 5.1 cm pipe inclined upward at 1 ° (Barnea 1987). Stratified 
flow is predicted to exist only to one side of the multivalued region, in which case it is wavy (region 
C). The transition to non-stratified flow (region A) coincides very well with that found experimen- 
tally, as reported by Barnea (1987). Although the TD holdup model was strictly derived only for 
smooth stratified flow, this agreement supports the claim that it is still accurate if the interface is 
wavy, and thus that multiple holdups and pressure drops are possible within the wavy/stratified 
flow regime. 

6. STABILITY OF MULTI PLE EQUILIBRIA 

Having established the existence of  multiple equilibria, it is important to determine which of  the 
stratified flows is physically realizable. A comprehensive description of a stability analysis of  the 
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flows will be presented in the near future (Landman 1991). A summary of the approach taken and 
the results are given here. 

A relatively simple but consistent approach to stability of stratified flow is to analyse the linear 
stability of a one-dimensional separated incompressible flow (Wallis 1969; Banerjee &Chan 1980). 
The conservation of mass and momentum equations for each phase are 

and 

8Hi + O_ [H,u,] = 0 [35a] 
c3t c3x 

Oui l Ou 2 o O~L 1( OP) 
8--t +2--~x +gD cos 8x = -p~ F~+~x " [35b] 

The notation is the same as used in section 2, with i = G, L for the gas and liquid phases, 
Hc = 1 -  HL and neL the non-dimensional interfacial height. The stress and gravity terms are 
included in FL and FG, given by [2]. Note that for steady uniform flow, the 1.h.s.s of the 
equations vanish, and the original force balance equations [1] result, leading to the TD equilibrium 
flows. 

The stability of a stratified equilibrium is analysed by linearizing the equations of motion, which 
can be reduced to a single second-order one-dimensional wave equation (Wallis 1969). Note that 
a spatially uniform model, where only the time derivatives remain on the l.h.s, of [35a] and [35b], 
is discarded. Such a model would be inconsistent with mass conservation, although the resulting 
ordinary differential equation leads to the simple result that the top and bottom equilibria on the 
holdup curve are stable and the intermediate value is unstable. 

In the time- and space-varying model adopted here, an equilibrium flow is considered stable 
if this equation is well-posed (hyperbolic), and a simple algebraic stability criterion is satisfied. 
This criterion relies upon the numerical evaluation of certain partial derivatives of the friction 
terms Fi. 

The results show that typically a continuous band (parameterized by holdup) of stratified 
solutions is stable, for fixed superficial liquid velocity. This band of stable solutions lies generally 
on the lower part of the holdup curve, with the upper branch unstable. 

For the flow maps of the previous section, the results are: 

(1) Figure 13 (oil/methane inclined at 2°)--the model predicts that only the 
equilibrium with the lowest holdup is stable and that this only occurs in part of 
the multivalued region. 

(2) Figure 14 (oil/methane inclined at 0.1°)--the model predicts that two stable 
equilibria coexist, namely those with the lower values of holdup. 

(3) Figure 15 (water/air inclined at 1 °)--three situations are possible depending on 
the flow rates; namely, all equilibria are unstable, the lowest is stable or the lower 
pair are stable. 

Although both the linear stability model and the TD criterion predict the existence of stable 
smooth stratified flow, the experimental evidence suggests that uphill flows are always wavy (Barnea 
1987). Therefore, further work is required to test the validity of the stability method used here. 
The results presented here are not unreasonable, however, given that flows with higher holdup are 
more likely to be unstable, both because of interfacial shear instability and the existence of 
back-flow. 

7. CONCLUSION 

It has been shown theoretically that non-unique equilibrium values of the liquid holdup and 
pressure drop can be expected to occur in stratified two-phase flow in upward inclined pipes. 
Multivaluedness occurs at low liquid-to-gas flow rates, and in general requires only very slight 
inclination angle. Such flow regimes are of practical importance, particularly in gas-condensate 
pipelines (Baker & Gravestock 1987). 
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Stability calculations demoas*aate that.when three equilibria are predicted, the equilibrium with 
the lowest holdup (exhibiting the least pressure drop)is the most likely to be stable, with the upper 
equih'brium unstable and the intermediate equilibrium either unstatfle or stable. In the latter case, 
hysteresis between stratified flows with different holdups and pressure drops is predicted,by the 
model. The intermediate and highest equilibria maybe  expected to  exhibit liquid back-flow near 
the wall, although both the TD theory and the calculations performed here for laminar duct flow 
show that back-flow does not necessarily occur. 

The stability of the lower equilibria is consistent with the observation of Baker & Gravestock 
(1987) that the upper branch solutions, which were the only ones displayed in Taitel & Dukler's 
original papers (1976a, b), grossly overpredict the liquid holdup in upward inclined gas-condensate 
pipelines. 

Criticism of the accuracy of the T D  holdup model has been raised (Spedding & Spence 1989). 
The comparison with experimental data that they present is statistically crude, however, and 
includes data for low gas flow rates. This is a situation where the assumptions of the TD model 
(e.g. uo ~, UL) are not met, and is a regime not relevant to this work. 

It remains an open question as to whether the predictions made here occur in practice. 
In experimental work, it is quite possible tha t  multiple equilibria have gone unnoticed if the 
investigators were not looking for such phenomena. In order to detect multiple holdups, the flow 
regime would have to be approached by varying the inlet fluxes to their desired values in different 
ways. In the work of Beggs & Brill (1973) in air/water flows, stratified flow was found to occur 
only for upward inclinations of < 3 °, for which they do not display data. It is noticed, however, 
that their results for prediction of holdup and pressure drop were least satisfactory at the lowest 
inclination angle studied of 5 ° . 

Persen 0987) performed experiments to specifically find the holdup in upward inclined stratified 
flows. The experimental data presented is for glycerol and air in a 5 crn 2 ° inclined pipe; however 
the TD model predicts single,valued holdup for the flow rates reported. Persen also presents a 
stability model for stratified fl0w based on the steady flow equations, but it is felt that the absence 
of time dependence makes the model questionable. 

Experiments are currently being proposed at BHP Melbourne Research Laboratories in order 
to search for the multiple steady states suggested by the present study. 

The theoretical results presented depend on the existence of stratified flow; at significant flow 
rates, experimental evidence of air/water flow in small diameter pipes suggests that stratified 
flow only persists at small upward inclination angles (Barnea et al. 1985; Barnea 1987), when the 
interface is actually wavy. Nevertheless, the one-dimensional momentum equations on which 
the equilibrium predictions are based hold in any steady flow regime, given that the appropriate 
forms of stress factors are used. Therefore, non-uniqueness of the liquid holdup and pressure drop 
should also not be excluded within other flow patterns, especially in upward inclined pipes, due 
to the non-linear nature of two-phase flow. 
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